Max Planck explained that energy was transferred in chunks known as **quanta**, equal to hv. The variable h is Planck's constant equal to  $6.6262 \times 10^{-34}$  J·s and the variable v represents the frequency in 1/s, s<sup>-1</sup>, or Hz (Hertz). This equation allows the calculation of the energy of photons, given their frequency. If the wavelength is given, the energy can be determined by first using the light equation (c =  $v\lambda$ ) to find the frequency, then using Planck's equation to calculate energy.



useful equations  $c = v\lambda$   $c = 3.00 \times 10^{8} \text{ m/s}$  E = hv  $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$   $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$  1 kJ = 1000 J



## Use the equations above to answer the following questions.

- 1. Ultraviolet radiation has a frequency of  $6.8 \times 10^{15}$  Hz. Calculate the energy, in joules, of the photon.
- 2. Find the energy, in joules per photon, of microwave radiation with a frequency of  $7.91 \times 10^{10}$  Hz.
- 3. A sodium vapor lamp emits light photons with a wavelength of  $5.89 \times 10^{-7}$  m. What is the energy of these photons?
- 4. One of the electron transitions in a hydrogen atom produces infrared light with a wavelength of 746.4 nm. What amount of energy causes this transition?
- 5. Find the energy in kJ for an x-ray photon with a frequency of  $2.4 \times 10^{18}$  s<sup>-1</sup>.
- 6. A ruby laser produces red light that has a wavelength of 500 nm. Calculate its energy in joules.
- 7. What is the frequency of UV light that has an energy of  $2.39 \times 10^{-18}$  J?
- 8. What is the wavelength and frequency of photons with an energy of  $1.4 \times 10^{-21}$  J?
- 9. What is the energy of a light that has 434 nm?
- 10. What is the wavelength of a light that has a frequency of  $3.42 \times 10^{11}$  Hz?